
Going Back and Forth: Efficient Multideployment and
Multisnapshotting on Clouds

Bogdan Nicolae
INRIA Saclay

France
bogdan.nicolae@inria.fr

John Bresnahan
Argonne National Laboratory

USA
bresnaha@mcs.anl.gov

Kate Keahey
Argonne National Laboratory

USA
keahey@mcs.anl.gov

Gabriel Antoniu
INRIA Rennes

France
gabriel.antoniu@inria.fr

ABSTRACT

Infrastructure as a Service (IaaS) cloud computing has rev-
olutionized the way we think of acquiring resources by in-
troducing a simple change: allowing users to lease compu-
tational resources from the cloud provider’s datacenter for a
short time by deploying virtual machines (VMs) on these re-
sources. This new model raises new challenges in the design
and development of IaaS middleware. One of those chal-
lenges is the need to deploy a large number (hundreds or
even thousands) of VM instances simultaneously. Once the
VM instances are deployed, another challenge is to simulta-
neously take a snapshot of many images and transfer them
to persistent storage to support management tasks, such as
suspend-resume and migration. With datacenters growing
rapidly and configurations becoming heterogeneous, it is im-
portant to enable efficient concurrent deployment and snap-
shotting that are at the same time hypervisor independent
and ensure a maximum compatibility with different configu-
rations. This paper addresses these challenges by proposing
a virtual file system specifically optimized for virtual ma-
chine image storage. It is based on a lazy transfer scheme
coupled with object versioning that handles snapshotting
transparently in a hypervisor-independent fashion, ensuring
high portability for different configurations. Large-scale ex-
periments on hundreds of nodes demonstrate excellent per-
formance results: speedup for concurrent VM deployments
ranges from a factor of 2 up to 25, with a reduction in band-
width utilization of as much as 90%.

Categories and Subject Descriptors

D.4.2 [OPERATING SYSTEMS]: Storage Management

General Terms

Design, Performance, Experimentation

Copyright 2011 Association for Computing Machinery. ACM acknowl-
edges that this contribution was authored or co-authored by an employee,
contractor or affiliate of the U.S. Government. As such, the Government re-
tains a nonexclusive, royalty-free right to publish or reproduce this article,
or to allow others to do so, for Government purposes only.
HPDC’11, June 8–11, 2011, San Jose, California, USA.
Copyright 2011 ACM 978-1-4503-0552-5/11/06 ...$10.00.

Keywords

large scale, virtual machine images, deployment, snapshot-
ting, lazy propagation, versioning, cloning

1. INTRODUCTION
In recent years, Infrastructure as a Service (IaaS) cloud

computing [30] has emerged as a viable alternative to the
acquisition and management of physical resources. With
IaaS, users can lease storage and computation time from
large datacenters. Leasing of computation time is accom-
plished by allowing users to deploy virtual machines (VMs)
on the datacenter’s resources. Since the user has complete
control over the configuration of the VMs using on-demand
deployments [5, 16], IaaS leasing is equivalent to purchasing
dedicated hardware but without the long-term commitment
and cost. The on-demand nature of IaaS is critical to mak-
ing such leases attractive, since it enables users to expand
or shrink their resources according to their computational
needs, by using external resources to complement their local
resource base [20].

This emerging model leads to new challenges relating to
the design and development of IaaS systems. One of the
commonly occurring patterns in the operation of IaaS is the
need to deploy a large number of VMs on many nodes of a
datacenter at the same time, starting from a set of VM im-
ages previously stored in a persistent fashion. For example,
this pattern occurs when the user wants to deploy a virtual
cluster that executes a distributed application or a set of en-
vironments to support a workflow. We refer to this pattern
as multideployment.

Such a large deployment of many VMs at once can take
a long time. This problem is particularly acute for VM im-
ages used in scientific computing where image sizes are large
(from a few gigabytes up to more than 10 GB). A typical
deployment consists of hundreds or even thousands of such
images. Conventional deployment techniques [31] broadcast
the images to the nodes before starting the VM instances, a
process that can take tens of minutes to hours, not count-
ing the time to boot the operating system itself. This can
make the response time of the IaaS installation much longer
than acceptable and erase the on-demand benefits of cloud
computing.

Once the VM instances are running, a similar challenge
applies to snapshotting the deployment: many VM images

that were locally modified need to be concurrently trans-
ferred to stable storage with the purpose of capturing the
VM state for later use (e.g., for checkpointing or off-line mi-
gration to another cluster or cloud). We refer to this pattern
as multisnapshotting. Conventional snapshotting techniques
rely on custom VM image file formats [12] to store only in-
cremental differences in a new file that depends on the orig-
inal VM image as the backing file. When taking frequent
snapshots for a large number of VMs, such approaches gen-
erate a large number of files and interdependencies among
them, which are difficult to manage and which interfere
with the ease-of-use rationale behind clouds. Furthermore,
with growing datacenter trends and tendencies to federate
clouds [17], configurations are becoming more and more het-
erogeneous. Custom image formats are not standardized and
can be used with specific hypervisors only, which limits the
ability to easily migrate VMs among different hypervisors.
Therefore, multisnapshotting must be handled in a trans-

parent and portable fashion that hides the interdependencies
of incremental differences and exposes standalone VM im-
ages, while keeping maximum portability among different
hypervisor configurations.
In addition to incurring significant delays and raising man-

ageability issues, these patterns may also generate high net-
work traffic that interferes with the execution of applications
on leased resources and generates high utilization costs for
the user.
This paper proposes a distributed virtual file system specif-

ically optimized for both the multideployment and multi-
snapshotting patterns. Since the patterns are complemen-
tary, we investigate them in conjunction. Our proposal of-
fers a good balance between performance, storage space, and
network traffic consumption, while handling snapshotting
transparently and exposing standalone, raw image files (un-
derstood by most hypervisors) to the outside.
Our contributions are can be summarized as follows:

• We introduce a series of design principles that optimize
multideployment and multisnapshotting patterns and
describe how our design can be integrated with IaaS
infrastructures (Sections 2 and 3).

• We show how to realize these design principles by build-
ing a virtual file system that leverages versioning-based
distributed storage services. To illustrate this point,
we describe an implementation on top of BlobSeer, a
versioning storage service specifically designed for high
throughput under concurrency [23, 24].

• We evaluate our approach in a series of experiments,
each conducted on hundreds of nodes provisioned on
the Grid’5000 testbed, using both synthetic traces and
real-life applications.

2. INFRASTRUCTUREANDAPPLICATION

MODEL
In order to reason about the challenges presented in the

previous sections, several important aspects need to be mod-
eled.

2.1 Cloud infrastructure
IaaS platforms are typically built on top of clusters made

out of loosely-coupled commodity hardware that minimizes

per unit cost and favors low power over maximum speed [5].
Disk storage (cheap hard-drives with capacities in the or-
der of several hundred GB) is attached to each machine,
while the machines are interconnected with standard Ether-
net links. The machines are configured with proper virtual-
ization technology, in terms of both hardware and software,
such that they are able to host the VMs. In order to provide
persistent storage, a dedicated repository is deployed either
as centralized [3] or as distributed [6] storage service running
on dedicated storage nodes. The repository is responsible for
storing the VM images persistently in a reliable fashion and
provides the means for users to manipulate them: upload,
download, delete, and so forth. With the recent explosion in
cloud computing demands, there is an acute need for scal-
able storage [7].

2.2 Application state
The state of the VM deployment is defined at each mo-

ment in time by two main components: the state of each
of the VM instances and the state of the communication
channels between them (opened sockets, in-transit network
packets, virtual topology, etc.).

Thus, in the most general case (Model 1), saving the appli-
cation state implies saving both the state of all VM instances
and the state of all active communication channels among
them. While several methods have been established in the
virtualization community to capture the state of a running
VM (CPU registers, RAM, state of devices, etc.), the issue
of capturing the global state of the communication channels
is difficult and still an open problem [19].

In order to avoid this issue, the general case is usually sim-
plified such that the application state is reduced to the sum
of states of the VM instances (Model 2). Any in-transit
network traffic is discarded, under the assumption that a
fault-tolerant networking protocol is used that is able to re-
store communication channels and resend lost information.

Even so, for VM instances that need large amounts of
memory, the necessary storage space can explode to huge
sizes. For example, saving 2 GB of RAM for 1,000 VMs con-
sumes 2 TB of space, which is unacceptable for a single one-
point-in-time deployment checkpoint. Therefore, Model 2
can further be simplified such that the VM state is repre-
sented only by the virtual disk attached to it (Model 3),
which is used to store only minimal information about the
state, such as configuration files that describe the environ-
ment and temporary files that were generated by the applica-
tion. This information is then later used to reboot and reini-
tialize the software stack running inside the VM instance.
Such an approach has two important practical benefits: (1)
huge reductions in the size of the state, since the contents
of RAM, CPU registers, and the like does not need to be
saved; and (2) portability, since the VM can be restored on
another host without having to worry about restoring the
state of hardware devices that are not supported or are in-
compatible between different hypervisors.

Since Model 3 is the most widely used checkpointing mech-
anism in practice, we consider the multisnapshotting pattern
for Model 3. Note, however, that our approach can be used
for Model 2 without modification and is furthermore easy to
extend to Model 1 by adding a mechanism to capture and
restore the global state of the communication channels.

2.3 Application access pattern
A VM typically does not access the whole initial image.

For example, it may never access some applications and util-
ities that are installed by default with the operating system.
In order to model this aspect, it is useful to analyze the
life-cycle of a VM instance, which consists of three phases:

• Boot phase: involves reading configuration files and
launching processes, which translates to random small
reads and writes from/to the VM disk image acting as
the initial state.

• Application phase: translates to either (1) negligible
virtual disk access (e.g., CPU-intensive applications
that do not require persistent storage or data-intensive
applications that rely on dedicated storage services,
such as Amazon S3 [6]) or (2) read-your-writes vir-
tual disk access (e.g web server deployment where each
web server writes and reads back log files and object
caches).

• Shutdown phase: generates negligible disk access to
the image and is completely missing if the VM in-
stance was terminated prematurely (e.g., because of
a hardware failure).

3. OUR APPROACH
We propose a virtual file system aimed at optimizing the

multi-deployment and multi-snapshotting patterns based on
the observations presented in Section 2.

3.1 Design overview
We rely on four key principles: aggregate the storage

space, optimize VM disk access, reduce contention, and op-
timize multisnapshotting.

3.1.1 Aggregate the storage space locally available
on the compute nodes

In most cloud deployments [5, 3, 4], the disks locally at-
tached to the compute nodes are not exploited to their full
potential. Most of the time, such disks are used to hold local
copies of the images corresponding to the running VMs, as
well as to provide temporary storage for them during their
execution, which utilizes only a small fraction of the total
disk size.
We propose to aggregate the storage space from the com-

pute nodes in a shared common pool that is managed in
a distributed fashion, on top of which we build our virtual
file system. This approach has two key advantages. First,
it has a potential for high scalability, as a growing number
of compute nodes automatically leads to a larger VM image
repository, which is not the case if the repository is hosted by
dedicated machines. Second, it frees a large amount of stor-
age space and overhead related to VM management on dedi-
cated storage nodes, which can improve performance and/or
quality-of-service guarantees for specialized storage services
that the applications running inside the VMs require and are
often offered by the cloud provider (e.g., database engines,
distributed hash tables, special purpose file systems, etc.)
An important issue in this context is to be able to lever-

age the storage space provided by the local disks without
interfering with the normal VM execution. For this reason,
only a part of the local disk is allocated to the common

pool, while the rest is freely usable by the hypervisor and
the VMs.

3.1.2 Optimize VM disk access by using on-demand
image mirroring

When a new VM needs to be instantiated, the underly-
ing VM image is presented to the hypervisor as a regular
file accessible from the local disk. Read and write accesses
to the file, however, are trapped and treated in a special
fashion. A read that is issued on a fully or partially empty
region in the file that has not been accessed before (by ei-
ther a previous read or write) results in fetching the missing
content remotely from the VM repository, mirroring it on
the local disk and redirecting the read to the local copy. If
the whole region is available locally, no remote read is per-
formed. Writes, on the other hand, are always performed
locally.

3.1.3 Reduce contention by striping the image

Each VM image is split into small, equal-sized chunks that
are evenly distributed among the local disks participating
in the shared pool. When a read accesses a region of the
image that is not available locally, the chunks that hold this
region are determined and transferred in parallel from the
remote disks that are responsible for storing them. Under
concurrency, this scheme effectively enables the distribution
of the I/O workload, because accesses to different parts of
the image are served by different disks.

Even in the worst-case scenario when all VMs read the
same chunks in the same order concurrently (for example,
during the boot phase), there is a high chance that the ac-
cesses get skewed and thus are not issued at exactly the
same time. This effect happens for various reasons, such
as different hypervisor initialization overhead and interleav-
ing of CPU time with I/O access (which under concurrency
leads to a situation where some VMs execute code during
the time in which others issue remote reads). For example,
when booting 100 VM instances simultaneously, we mea-
sured two random instances to have, on average, a skew of
about 100 ms between the times they access the boot sec-
tor of the initial image. This skew grows higher the longer
the VM instances continue with the boot process. What
this means is that at some point under concurrency they
will access different chunks, which are potentially stored on
different storage nodes, and thus contention is reduced.

While splitting the image into chunks reduces contention,
the effectiveness of this approach depends on the chunk size
and is subject to a trade-off. A chunk that is too large
may lead to false sharing; that is, many small concurrent
reads on different regions in the image might fall inside the
same chunk, which leads to a bottleneck. A chunk that is
too small, on the other hand, implies a higher access over-
head, both because of higher network overhead, resulting
from having to perform small data transfers, and because of
higher metadata access overhead, resulting from having to
manage more chunks.

To reduce contention even further and provide higher avail-
ability and fault tolerance, chunks can be replicated on dif-
ferent local disks. Again, we are faced with a trade-off: a
high degree of replication raises availability and provides
better fault tolerance; however, it comes at the expense of
higher storage space requirements.

3.1.4 Optimize multisnapshotting by means of shad-
owing and cloning

Saving a full VM image for each VM is not feasible in the
context of multisnapshotting. Since only small parts of the
VMs are modified, this would mean massive unnecessary du-
plication of data, leading not only to an explosion of utilized
storage space but also to an unacceptably high snapshotting
time and network bandwidth utilization.
For this reason, several custom image file formats were

proposed that optimize taking incremental VM image snap-
shots. For example, Qemu/KVM introduced the QCOW2 [12]
format for this purpose, while other work such as [26] pro-
poses the Mirage Image Format (MIF). This approach en-
ables snapshots to share unmodified content, which lowers
storage space requirements. However, it presents several
drawbacks.
First, a new snapshot is created by storing incremental

differences as a separate file, while leaving the original file
corresponding to the initial image untouched and using it
as a backing file. When taking snapshots of the same im-
age successively, a chain of files that depend on each other
is obtained, which raises a lot of issues related to manage-
ability. For example, one must keep track of dependencies
between files. Even when such functionality is implemented,
the cloud customer has to download a whole set of files
from the cloud in order to get a local copy of a single VM
snapshot—an operation that makes VM image downloads
both costly and complex. Furthermore, in production use,
this can lead to significant performance issues: a huge num-
ber of files will accumulate over time, thereby introducing a
large metadata overhead.
Second, a custom image file format limits the migration

capabilities. If the destination host where the VM needs
to be migrated runs a different hypervisor that does not
understand the custom image file format, migration is not
possible.
Therefore, it is highly desirable to satisfy three require-

ments simultaneously:

• Store only the incremental differences between snap-
shots.

• Consolidate each snapshot as a standalone entity.

• Present a simple raw image format to the hypervisors
to maximize migration portability.

We propose a solution that addresses these three require-
ments by leveraging two features proposed by versioning sys-
tems: shadowing and cloning [27, 23]. Shadowing means to
offer the illusion of creating a new standalone snapshot of
the object for each update to it but to physically store only
the differences and manipulate metadata in such way that
the illusion is upheld. This effectively means that from the
user’s point of view, each snapshot is a first-class object that
can be accessed independently. For example, let’s assume a
small part of a large file needs to be updated. With shad-
owing, the user sees the effect of the update as a second file
that is identical to the original except for the updated part.
Cloning means to duplicate an object in such way that it
looks like a stand-alone copy that can evolve in a different
direction from the original but physically shares all initial
content with the original.
Therefore, we propose to deploy a distributed version-

ing system that efficiently supports shadowing and cloning,

while consolidating the storage space of the local disks into
a shared common pool. With this approach, snapshotting
can be easily performed in the following fashion. The first
time a snapshot is built, for each VM instance a new virtual
image clone is created from the initial image. Subsequent
local modifications are written as incremental differences to
the clones and shadowed. In this way all snapshots of all VM
instances share unmodified content among one another and
still appear to the outside as independent, simple raw im-
age files, which addresses the three requirements mentioned
above.

3.2 Applicability in the cloud
The simplified architecture of a cloud that integrates our

approach is depicted in Figure 1. The typical elements found
in the cloud are illustrated with a light background, while
the elements that are part of our proposal are highlighted by
a darker background. A distributed versioning storage ser-
vice that supports cloning and shadowing is deployed on the
compute nodes and consolidates parts of their local disks
into a common storage pool. The cloud client has direct
access to the storage service and is allowed to upload and
download images from it. Every uploaded image is automat-
ically striped. Furthermore, the cloud client interacts with
the cloud middleware through a control API that enables a
variety of management tasks, including deploying an image
on a set of compute nodes, dynamically adding or removing
compute nodes from that set, and snapshotting individual
VM instances or the whole set. The cloud middleware in
turn coordinates the compute nodes to achieve the afore-
mentioned management tasks. Each compute node runs a
hypervisor that is responsible for running the VMs. The
reads and writes of the hypervisor are trapped by the mir-
roring module, which is responsible for on-demand mirroring
and snapshotting (as explained in Section 3.1) and relies on
both the local disk and the distributed versioning storage
service to do so.

The cloud middleware interacts directly with both the hy-
pervisor, telling it when to start and stop VMs, and the
mirroring module, telling it what image to mirror from the
repository, when to create a new image clone (CLONE), and
when to persistently store its local modifications (COMMIT).
Both CLONE and COMMIT are control primitives that result
in the generation of a new, fully independent VM image that
is globally accessible through the storage service and can be
deployed on other compute nodes or manipulated by the
client. A global snapshot of the whole application, which
involves taking a snapshot of all VM instances in parallel, is
performed in the following fashion. The first time the snap-
shot is taken, CLONE is broadcast to all mirroring modules,
followed by COMMIT. Once a clone is created for each VM
instance, subsequent global snapshots are performed by is-
suing each mirroring module a COMMIT to its corresponding
clone.

CLONE and COMMIT can also be exposed by the cloud mid-
dleware at the user level through the control API for fine-
grained control over snapshotting. This approach enables
snapshotting to be leveraged in interesting ways. For ex-
ample, let’s assume a scenario where a complex, distributed
application needs to be debugged. Running the application
repeatedly and waiting for it to reach the point where the
bug happens might be prohibitively expensive. However,
CLONE and COMMIT can be used to capture the state of

Hypervisor

Mirroring module

Local disk

Cloud middleware

Compute node

Client

R/W image

Local

R/W

Remote R/W Put/get image

Control API

Control VM

CLONE
COMMIT

Hypervisor

Mirroring module

Compute node

R/W image

Local R/W

CLONE
COMMIT

Local disk

Local diskLocal diskLocal diskLocal diskLocal disk

Distributed versioning storage service

Remote R/W Local R/W

Control VM

Figure 1: Cloud architecture that integrates our approach (dark background).

the application right before the bug happens. Since all im-
age snapshots are independent entities, they can be either
collectively or independently analyzed and modified in an
attempt to fix the bug. Once this fix is made, the applica-
tion can safely resume from the point where it left. If the
attempt was not successful, the approach can continue iter-
atively until a fix is found. Such an approach is highly useful
in practice at large scale because complex synchronization
bugs tend to appear only in large deployments and are usu-
ally not triggered during the test phase, which is usually
performed at smaller scale.

3.3 Zoom on mirroring
One important aspect of on-demand mirroring is the de-

cision of how much to read from the repository when data is
unavailable locally, in such way as to obtain a good access
performance.
A straightforward approach is to translate every read is-

sued by the hypervisor in either a local or remote read, de-
pending on whether the requested content is locally avail-
able. While this approach works, its performance is ques-
tionable. More specifically, many small remote read requests
to the same chunk generate significant network traffic over-
head (because of the extra networking information encapsu-
lated with each request), as well as low throughput (because
of the latencies of the requests that add up).
Moreover, in the case of many scattered small writes, a

lot of small fragments need to be accounted for, in order to
remember what is available locally for reading and what is
not. Fragmentation is costly in this case and incurs a sig-
nificant management overhead, negatively impacting access
performance.
For this reason, we propose two strategies that aim to

limit the negative impact of small reads and writes. First,
a read operation on a region that is not fully available lo-
cally triggers remote reads that fetch the full minimal set
of chunks that cover the requested region. While this leads
to more network traffic than is strictly required, it improves
the performance of correlated reads (i.e., a read on one re-
gion that is followed by a read “in the neighborhood”) at a
minimal cost when using small chunk sizes.
The second strategy we propose limits fragmentation by

forcing a single contiguous region to be mirrored locally for
each chunk. More specifically, a second write that falls on
the same chunk as a previous write such that the gap be-
tween them is not available locally will trigger a remote read

that will fill the gap. With this approach only the limits of
a single contiguous region need to be maintained for each
chunk, which places an upper limit on fragmentation over-
head: it is directly proportional to the number of chunks in
the worst case scenario when a small part of each chunk is
written to.

4. IMPLEMENTATION
In Section 3.2 we illustrated how to apply our approach

in the cloud by means of two basic building blocks: a dis-
tributed versioning storage service, which supports cloning
and shadowing and is responsible for managing the reposi-
tory, and a mirroring module, which runs on each compute
node and is responsible for trapping the I/O accesses of the
hypervisor to the image with the purpose of facilitating on-
demand mirroring and snapshotting.

In this section we show how to efficiently implement these
building blocks in such a way that they achieve the design
principles introduced in Section 3.1 on the one hand and are
easy to integrate in the cloud on the other hand.

4.1 Dependencies
We have implemented the distributed versioning storage

service on top of BlobSeer [23, 24, 25]. This choice was mo-
tivated by several factors. First, BlobSeer enables scalable
aggregation of storage space from the participating nodes
with minimal overhead in order to store BLOBs (Binary
Large OBjects). Data striping is performed transparently on
BLOBs, which enables direct mapping between BLOBs and
virtual machine images and therefore eliminates the need for
explicit chunk management. Second, BlobSeer offers out-of-
the-box support for shadowing, which significantly simpli-
fies the implementation of the COMMIT primitive. Third,
the service was optimized to sustain a high throughput even
under heavy access concurrency, which is especially useful in
the context of the multideployment and multisnapshotting
patterns because it enables efficient parallel access to the
image chunks.

The mirroring module was implemented on top of FUSE
(FileSystem in UserspacE) [2], a choice that presents sev-
eral advantages. First, it enables exposing the VM image
to the hypervisors as a regular raw file that is accessible
through the standard POSIX access interface. This ensures
maximum compatibility with different hypervisors and en-
ables running the same unmodified mirroring module on all
compute nodes, regardless of which hypervisor is installed

Hypervisor

Local FS

BlobSeer

Cloud middleware

open, close, read, write

Control VM

ioctl: clone, commit

Fuse module

R/W

translator

Local modification

manager

BLOB API

POSIX API

Figure 2: Implementation details: zoom on the
FUSE module.

on them. Second, FUSE takes advantage of the kernel-level
virtual file system, which benefits of the cache management
implemented in the kernel for extra performance boost. The
downside of using FUSE is the extra context-switching over-
head between the kernel space and the user space when an
I/O system call is issued. However, this overhead has a min-
imal negative impact, as demonstrated in Section 5.4.

4.2 Modus operandi
The FUSE module, presented in Figure 2, exposes each

BLOB as a directory and its associated snapshots as files
in that directory. It consists of two submodules: the local
modification manager, responsible for tracking what content
is available locally, and the R/W translator, responsible for
translating each original read and write request, respectively,
into local and remote reads and into local writes, according
to the strategy presented in Section 3.3.
Whenever a VM image is opened for the first time, an

initially empty file of the same size is created on the local
disk. This file is then used to mirror the contents of the cor-
responding BLOB snapshot. For performance reasons, the
whole local file is mmapped in the host’s main memory for as
long as the snapshot is still open. This approach allows local
reads and writes to be performed directly as memory access
operations, thus avoiding unnecessary copies between mem-
ory buffers. Moreover, local writes are optimized this way
because they benefit from the built-in asynchronous mmap
write strategy implemented in the kernel.
When the snapshot is closed, the mmapped space is un-

mapped, and the local file is closed. The local modification
manager then associates and writes extra metadata to the
local file that describes the status of the local modifications
(which chunks are available locally, which chunks have been
altered, etc.). If the same VM image snapshot is reopened
later, this extra metadata is used to reopen the same local
file and restore the state of the local modifications.
Since the VM image is accessible from the outside through

a POSIX-compliant access interface, we had to implement
the CLONE and COMMIT primitives as ioctl system calls that
are trapped and treated by the FUSE module in a special
fashion.

COMMIT relies directly on the shadowing support exposed
by BlobSeer in order to write all local modifications into a
new BLOB snapshot. Figure 3 shows how this is possi-
ble through distributed segment trees that are enriched with
versioning information [24]. More precisely, each tree node
covers a region of the BLOB, with leaves covering chunks
directly and nonleaf nodes covering the combined range of
their left and right children. Nonleaf nodes may have chil-
dren that belong to other snapshots, thus enabling sharing
not only of unmodified chunks among snapshots of the same

BLOB but also of unmodified metadata. In this way, con-
secutive COMMIT calls to the same VM image generate a
totally ordered set of snapshots of the same BLOB, each of
which can be directly mapped to a fully independent VM
image snapshot-in-time that satisfies the requirements pre-
sented in Section 3.1.4.

Although the original BlobSeer implementation did not
directly support cloning, we found this functionality to be
easy to add: it is enough to add a new tree root correspond-
ing to a different BLOB that has the same children as the
segment tree of the original BLOB snapshot (Figure 3(b)).
In this way, the implementation of the CLONE primitive gen-
erates a minimal overhead, both in space and in time.

For this work, we did not integrate the CLONE and COMMIT

primitives in a cloud middleware. Instead, we implemented
a simplified service that is responsible for coordinating and
issuing these two primitives in a series of experimental sce-
narios that are described in the next section.

For completeness, however, we show how to integrate these
primitives with Nimbus [3], a widely used open source cloud
toolkit that allows turning clusters into Infrastructure as a
Service clouds. A Nimbus deployment consists of a central
service, installed on a dedicated node, and a series of con-
trol agents, installed on the compute nodes that host the
virtual machines. Cloud clients interact by means of web-
based messaging protocols with the central service, which
in turn processes the client requests and issues control com-
mands to the control agents. These agents have direct access
to the resources of the compute node, controling both the
hypervisor and the local file system. In order to integrate
our approach in this architecture, the control agent needs to
be extended such that it can issue the CLONE and COMMIT

ioctl calls to the FUSE module. Furthermore, at the level of
the central service, the interface exposed to the client needs
to be extended to offer additional features, such as global
snapshotting of all VM instances and fine-grained CLONE

and COMMIT support for individual instances. Additional
code is required to translate these advanced features into
corresponding control commands.

5. EVALUATION
This section presents a series of experiments that evaluate

how well our approach performs for both the multideploy-
ment and multisnapshotting patterns.

5.1 Experimental setup
The experiments were performed on Grid’5000 [15], an

experimental testbed for distributed computing that feder-
ates nine sites in France. We used the 120-cluster system in
Nancy, each with x86 64 CPUs offering hardware support
for virtualization, local disk storage of 250 GB (access speed
≃55 MB/s), and at least 8 GB of RAM. The nodes are in-
terconnected with Gigabit Ethernet (measured 117.5 MB/s
for TCP sockets with MTU = 1500 B with a latency of
≃0.1 ms). The hypervisor running on all compute nodes is
KVM 0.12.5, while the operating system is a recent Debian
Sid Linux distribution. For all experiments, a 2 GB raw
disk image file based on the same Debian Sid distribution
was used.

5.2 Performance of multideployment
The first series of experiments evaluates how well our ap-

proach performs under the multideployment pattern, when

(0, 4)

(0, 2) (2, 4)

(0, 1) (1, 2) (2, 3) (3, 4)

C1 C3 C4C2

(3, 4)

C4

Image A

Snap. 1

(a) Segment tree and chunk com-
position of the initial VM image
A

(0, 4)

(0, 2) (2, 4)

(0, 1) (1, 2) (2, 3) (3, 4)

C1 C3 C4C2

(3, 4)

C4

Image A

Snap. 1

(0, 4)

Image B

Snap. 1

(b) Segment trees and chunk composi-
tion after VM image A was cloned into
VM image B using CLONE

(0, 4)

(0, 2) (2, 4)

(0, 1) (1, 2) (2, 3) (3, 4)

C1 C3 C4

(0, 4)

(0, 2) (2, 4)

(1, 2)

C2 C3

(2, 3)

(0, 4)

(2, 4)

(3, 4)

C4C2

Image A

Snap. 1

Image B

Snap. 1

Image B

Snap. 2

(c) Segment trees and chunk composition
after VM image B was snapshotted two
times consecutively using COMMIT

Figure 3: Cloning and shadowing by means of segment trees.

a single initial VM image is used to concurrently instantiate
a large number of VM instances.
We compare our approach with two common techniques

used to deploy and snapshot VM images:

Prepropagation.
Prepropagation [28, 31] is the most common method used

on clouds. It consists of two phases. In the first phase the
VM image is broadcast to the local storage of all compute
nodes that will run a VM instance. Once the VM image is
available locally on all compute nodes, in the second phase
all VMs are launched simultaneously. Since in this phase
all content is available locally, no remote read access to the
repository is necessary. This approach enables direct local
access to the image and eliminates contention to the reposi-
tory, which is often implemented as a centralized NFS server,
as discussed in Section 2.1. The downside of this approach,
however, is the initialization phase, which potentially incurs
a high overhead, in terms of both time and network traffic.
To minimize this overhead, we use taktuk [10], a highly scal-
able broadcasting tool based on algorithms that follow the
postal model [8] and is based on adaptive multicast trees
that optimize the bandwidth/latency tradeoff. In our case,
we broadcast the raw 2 GB VM image file, initially stored
on a NFS server, to all nodes using taktuk. The NFS server
is equipped with a regular 1 Gbit Ethernet interface, similar
in configuration to the compute nodes.

Qcow2 over PVFS.
The second method we compare against is closer in con-

cept to our own approach. We assume that the initial VM
image is stored in a striped fashion on a distributed file sys-
tem. We have chosen to use PVFS [9] to fill this role, as it is
specifically geared to high performance and employs a dis-
tributed metadata management scheme that avoids any po-
tential bottlenecks due to metadata centralization. PVFS is
deployed on all available compute nodes, as is our approach,
and is responsible for aggregating their local storage space in
a common pool. To instantiate a new set of VM instances on
the compute nodes, in a first initialization phase we create a
new qcow2 [12] copy-on-write image in the local file system
of each compute node, using the initial raw 2 GB VM im-
age stored in PVFS as the backing image (see Section 3.1.4

for details). Once the qcow2 image file is created on each
compute node, in a second phase the hypervisor is launched
by using the new qcow2 image as the underlying VM im-
age, which automatically fetches data on demand from the
backing raw image.

The comparison is based on the following performance
metrics:

• Average time to boot per instance. This time is mea-
sured after the initialization phase completed: from
when the hypervisor is launched up to the moment
the operating system inside the VM has fully booted
(more precisely, the /etc/rc.local script was executed).
This parameter is relevant because it reveals the im-
pact of remote concurrent reads (present in our ap-
proach and qcow2 over PVFS) vs. independent local
reads (prepropagation) on the scalability of deploying
the VMs in parallel.

• Time-to-complete booting for all instances. Essentially
this metric measures the time taken by the slowest
VM instance to finish booting. It is relevant because
it measures the total time needed for the deployment
to be ready, which is what the cloud user directly per-
ceives from the outside.

• Total network traffic. generated throughout the exe-
cution of all VMs, including during the initialization
phase (if applicable). This metric is relevant because
it measures networking resource consumption and is
proportional to the costs of running the deployment
on the cloud.

The series of experiments consists in concurrently deploy-
ing an increasing number of VMs, one VM on each compute
node. In the case of prepropagation, the initial VM image
is stored on a local NFS server that serves as the source of
the broadcast. In the case of our approach and qcow2 over
PVFS, BlobSeer and PVFS respectively are deployed on the
compute nodes, and the initial VM image is stored on them.
For both BlobSeer and PVFS the chunk size was fixed at
256 KB, which we found to optimize the trade-off between
having access to many small chunks and competing to access
the same chunk, as discussed in Section 3.1.3. In order to
obtain a fair comparison, chunks were not replicated.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 20 40 60 80 100 120

A
v
g
.
ti
m

e
/i
n
s
ta

n
c
e
 t
o
 b

o
o
t
(s

)

Number of concurrent instances

taktuk pre-propagation
qcow2 over PVFS, 256K stripe

our approach, 256K chunks

(a) Average time to boot per instance

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 20 40 60 80 100 120

T
o
ta

l
ti
m

e
 t
o
 b

o
o
t
(s

)

Number of concurrent instances

taktuk pre-propagation
qcow2 over PVFS, 256K stripe

our approach, 256K chunks

(b) Completion time to boot all instances

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120

S
p
e
e
d
u
p

Number of concurrent instances

speedup vs. taktuk
speedup vs. qcow2 over PVFS

(c) Speedup of the completion time to boot all instances
for our approach

 0

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100 120 140

T
o
ta

l
n
e
tw

o
rk

 t
ra

ff
ic

 (
G

B
)

Number of concurrent instances

taktuk pre-propagation
qcow2 over PVFS, 256K stripe

our approach, 256K chunks

(d) Total generated network traffic

Figure 4: Multideployment: our approach compared with full prepropagation using broadcast/qcow2 images
using PVFS as storage backend.

Figure 4(a), shows the average boot time per VM instance.
As expected, in the case of prepropagation, average boot
time is almost constant, since the data is already on the lo-
cal file system and therefore no remote transfer is required.
Both with qcow2 over PVFS and with our approach, boot
times are significantly higher, as chunks need to be fetched
remotely from the storage nodes on the fly during boot time.
The more instances, the higher the read contention and thus
the higher the boot times. As can be observed, however, this
increasing trend resulting from increasing read pressure un-
der concurrency is hardly noticeable for our approach com-
pared with qcow2 over PVFS, which hints at better scalabil-
ity. We can trace this back to the first optimization strategy
introduced in Section 3.3, which avoids many small reads by
prefetching whole chunks.
Figure 4(b) shows the total time to boot all VMs. As can

be seen, prepropagation is an expensive step, especially since
only a small part of the initial VM is actually accessed. This
gives brings both our approach and qcow2 over PVFS a clear
advantage. Looking at the speedup depicted in Figure 4(c),
we can see an improvement of up to a factor of 25 with
our approach vs. prepropagation, which slowly decreases

because of increased read contention. On the other hand,
the speedup vs. qcow2 over PVFS slowly increases thanks
to our mirroring strategy, reaching a little over 2 at 110
instances.

Figure 4(d) illustrates the total network traffic incurred
by both approaches. As expected, for all approaches the
growth is linear and is directly proportional to the amount
of data that was brought locally on the compute node. In
the case of prepropagation, the network traffic is a little over
220 GB for 110 instances, as full content was transferred lo-
cally. Comparatively, our approach and qcow2 over PVFS
bring huge savings in network traffic of around 13 GB and
12 GB, respectively. The slightly larger consumption in our
case is due to the prefetching strategy in the mirroring mod-
ule, which nevertheless is worthwhile considering the CPU
time saved during the boot process for the whole deploy-
ment.

5.3 Multisnapshotting performance
This section evaluates the performance of our approach in

the context of the multisnapshotting access pattern. Since it
is infeasible to copy back to the NFS server the whole set of

full VM images that include the local modifications done by
each VM instance, we limit the comparison of our approach
with qcow2 over PVFS only.
The experimental setup is similar to the one used in the

previous section: BlobSeer and PVFS are deployed on the
compute nodes, and the initial 2 GB VM image is stored in
a striped fashion on them, in chunks of 256 KB. The local
modifications of each VM image are considered to be small,
around 15 MB; this corresponds to the operating system and
application writing configuration files and contextualizing
the deployment, which simulates a setting with negligible
disk access, as discussed in Section 2.3.
In the case of qcow2 over PVFS, the snapshot is taken

by concurrently copying the set of qcow2 files locally avail-
able on the compute nodes back to PVFS. In the case of
our approach, the images are snapshotted in the following
fashion: first a CLONE, followed by a COMMIT is broadcast
to all compute nodes hosting the VMs. In both cases, the
snapshotting process is synchronized to start at the same
time.
The average time to snapshot per instance is depicted in

Figure 5(a). As can be observed, both in our approach and
qcow2 over PVFS, average snapshotting time increases al-
most imperceptibly at a very slow rate. The reason is that
an increasing number of compute nodes will always have
at least as many local disks available to distribute the I/O
workload, greatly reducing write contention. Since Blob-
Seer uses an asynchronous write strategy that returns to
the client before data was committed to disk, initially the
average snapshotting time is much better, but it gradually
degrades as more concurrent instances generate more write
pressure that eventually has to be committed to disk. The
performance level is closing to the same level as qcow2 over
PVFS, which essentially is a parallel copy of the qcow2 files.
Completion time for snapshotting, depicted in Figure 5(b),

increases at a higher rate for both approaches because of
the increasing striping overhead generated by the increasing
number of concurrent instances. More specifically, more net-
work connections need to be opened in parallel on each com-
pute node, thus increasing latencies and the standard devi-
ation of the snapshotting time. Overall, both approaches
perform similarly; however, our approach avoids the genera-
tion of a new file for each snapshot and thus greatly improves
manageability, as discussed in Section 3.1.4.

5.4 Local access performance: read-your-writes
access patterns

As discussed in Section 2.3, some deployments involve vir-
tualized web servers or other applications that need to main-
tain log files or object caches directly in the VM image, a
requirement that leads to a read-your-writes access pattern
to the VM image.
Therefore, in this section we evaluate the performance of

our approach for such a scenario, comparing its overhead
with the case when the hypervisor has direct access to the
local filesystem of the compute nodes hosting the VM in-
stances. This is the case for both prepropagation and qcow2
over PVFS. We found the overhead of writing in a qcow2 file
vs. a raw file to be negligible. Therefore, we compare our
approach only with the case when the hypervisor is using a
raw image file that is fully available locally.
To generate a write-intensive scenario that also reads back

written data, we use a standard benchmarking tool: Bon-

nie++ [21]. Bonnie++ creates and writes a set of files that
fill a large part of the remaining free space of the disk, then
reads back the written data, and then overwrites the files
with new data, recording throughput in all cases. Other
performance factors such as how many files per second can
be created and deleted are also recorded. Since data is first
written sequentially and then read back, no remote reads are
involved for our approach. This in turn means contention
is not an issue, and therefore experimentation with a sin-
gle VM instance is enough to predict behavior of multiple
instances that run concurrently.

The experiment consists in booting the VM instance and
then running Bonnie++ using both our approach and a lo-
cally available image directly. The total space written and
read back by Bonnie++ was 800 MB out of a total of 2 GB,
in blocks of 8 KB.

Throughput results are shown in Figure 6. As can be seen,
reads of previously written data have the same performance
levels for both approaches. This result is as expected, be-
cause previously written data is available locally for both
approaches and therefore no additional overhead is incurred
by our approach. Interestingly, write throughput and over-
write throughput are almost twice as high for our approach.
The reason is that our mmap strategy triggers a more effi-
cient write-back strategy in the host’s kernel and overrides
the default hypervisor strategy.

On the other hand, the extra context switches and man-
agement overhead incurred by FUSE for our approach be-
come visible when measuring the number of operations per
second. Figure 7 shows lower numbers for our approach, es-
pecially with random seeks and file deletion. However, since
operations such as file creation/deletion and seeks are rela-
tively rare and execute very fast, the performance penalty
in real life is not an issue.

5.5 Benefits for real-life, distributed applica-
tions

As a last series of experiments, we illustrate the bene-
fits of our approach for an application in the real world:
Monte Carlo approximations. Such applications are a com-
mon type of high-performance computing (HPC) scientific
applications that are loosely coupled and thus ideal candi-
dates to run on the cloud without excessive performance loss
due to virtualized networking infrastructure.

More specifically, these applications rely on repeated ran-
dom sampling to compute their results and are often used
in simulating physical and mathematical systems. Such an
approach is particularly useful when it is infeasible or im-
possible to compute the exact result by using deterministic
methods. In our case, we estimate the number π with high
precision by sampling a large number of points in a square
and calculating the number of points that fall inside the in-
scribed circle. This work is evenly distributed among 100
workers running as VM instances on the compute nodes.
Each worker is programmed to save intermediate results in
a temporary file inside the VM image (size per instance is
≃10 MB).

In a first setting, the VM deployment is running uninter-
rupted for all three approaches: prepropagation, qcow2 over
PVFS, and our approach. This setting highlights multide-
ployment only. In all three cases, time to completion was
measured.

In a second setting, we assume the VM deployment is

 0

 0.5

 1

 1.5

 2

 0 20 40 60 80 100 120

T
im

e
 (

s
)

Number of concurrent instances

qcow2 over PVFS, 256K stripe
our approach, 256K chunks

(a) Average time snapshot an instance under concurrency

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 20 40 60 80 100 120

T
im

e
 (

s
)

Number of concurrent instances

qcow2 over PVFS, 256K stripe
our approach, 256K chunks

(b) Completion time to snapshot all instances

Figure 5: Multisnapshotting: our approach compared with qcow2 images using PVFS as storage backend.
Diff for each image is 15 MB.

 0

 100000

 200000

 300000

 400000

 500000

BlockR BlockW BlockO

T
h

ro
u

g
h

p
u

t
(K

B
/s

)

Access pattern

local
our-approach

Figure 6: Bonnie++ sustained
throughput: read, write, and over-
write in blocks of 8K (Block-
R/BlockW/BlockO).

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

RndSeek CreatF DelF

N
u

m
b

e
r

o
f

o
p

e
ra

ti
o

n
s
/s

Operation type

local
our-approach

Figure 7: Bonnie++ sustained
number of operations per second:
random seeks (RndSeek), file cre-
ation/deletion (CreatF/DelF).

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

Uninterrupted Suspend/Resume

C
o

m
p

le
ti
o

n
 t

im
e

 (
s
)

Setting

pre-propagation
qcow2-over-PVFS

our-approach

Figure 8: Benefits in the real
world: time to finish a Monte Carlo
simulation using 100 VM instances
in various settings.

snapshotted and terminated at some point during its execu-
tion and then resumed on another set of nodes, which high-
lights both multideployment and multisnapshotting perfor-
mance. In this case, our approach was compared with qcow2
over PVFS only. More specifically, once the VM instances
are down, they are rebooted, and the application resumes
from the last intermediate result saved in the temporary file.
Each VM instance is resumed on a different compute node
from the one where it originally ran, to simulate a resume
on a fresh set of nodes where no parts of the VM images are
available locally and therefore need to be fetched remotely.
We measured time to completion for the whole cycle of mul-
tideployment, partial application execution, multisnapshot-
ting, then multiredeployment, and at last final application
execution for both cases.
We used the same hypervisor configuration to resume the

application this experiment in order to be able to compare
our approach with qcow2 over PVFS. We emphasize the
practical importance of portability in this context: for our
approach the new set of nodes may run a different hypervi-
sor equally well, yet migration is still possible without any
further effort, thanks to exposing snapshots as raw image
files.
Results are shown in Figure 8. As expected from the re-

sults obtained in Section 5.2, in the first setting the initial-
ization phase for prepropagation is extremely costly, limiting
the on-demand provisioning performance on the cloud. On
the other hand, our approach and qcow2 over PVFS perform
significantly better, with our approach having better perfor-
mance thanks to the advantage of a faster boot phase. This
advantage increases in the second setting, since the boot
phase is executed twice, effectively reducing the migration
overhead as a whole. For a total computation time of about
1000 s, our approach enables the deployment to be resumed
more rapidly: by almost 5%.

6. RELATEDWORK
Multideployment that relies on full broadcast-based pre-

propagation is a widely used technique [28, 31, 14]. While
this technique avoids read contention to the repository, it
can incur a high overhead in both network traffic and ex-
ecution time, as presented in Section 5.2. Furthermore,
since the VM images are fully copied locally on the compute
nodes, multisnapshotting becomes infeasible: large amounts
of data are unnecessarily duplicated and cause unacceptable
transfer delays, not to mention huge storage space and net-
work traffic utilization.

In order to alleviate this problem, many hypervisors pro-
vide native copy-on-write support by defining custom VM
image file formats [12, 26] specifically designed to efficiently
store incremental differences. Much like our approach, this
allows base images to be used as read-only templates for
multiple logical instances which store per-instance modifica-
tions. However, lack of standardization and the generation
of many interdependent new files limit the portability and
manageability of the resulting VM image snapshots.
A different approach to instantiate a large number of VMs

from the same initial state is proposed in [18]. The authors
introduce a new cloud abstraction: VM FORK. Essentially
this is the equivalent of the fork call on UNIX operating sys-
tems, instantaneously cloning a VM into multiple replicas
running on different hosts. While this is similar to CLONE

followed by COMMIT in our approach, the focus is on mini-
mizing the time and network traffic to spawn and run, on the
fly, new remote VM instances that share the same state of
an already running VM. Local modifications are assumed to
be ephemeral, and no support to store the state persistently
is provided.
Closer to our approach is Lithium [13], a fork-consistent

replication system for virtual disks. Lithium supports in-
stant volume creation with lazy space allocation and instant
creation of writable snapshots. Unlike our approach, which
is based on segment trees, Lithium is based on log struc-
turing [29], which can potentially degrade read performance
when increasing the number of consecutive snapshots for the
same image: the log of incremental differences starts grow-
ing, making it more expensive to reconstruct the image.
Cluster volume managers for virtual disks such as Paral-

lax [22] enable compute nodes to share access to a single,
globally visible block device, which is collaboratively man-
aged to present individual virtual disk images to the VMs.
While this enables efficient frequent snapshotting, unlike our
approach, sharing of images is intentionally not supported in
order to eliminate the need for a distributed lock manager,
which is claimed to dramatically simplify the design.
Several storage systems, such as Amazon S3 [6] (backed

by Dynamo [11]), have been specifically designed as highly
available key-value repositories for cloud infrastructures. They
can be valuable building blocks for block-level storage vol-
umes [1] that host virtual machine images; however, they
are not optimized for snapshotting.
Our approach is intended to complement existing cloud

computing platforms, both from industry (Amazon Elastic
Compute Cloud: EC2 [5]) and from academia (Nimbus [3,
17, 16], OpenNebula [4]). While the details for EC2 are
not publicly available, it is widely acknowledged that all
these platforms rely on several of the techniques presented
above. Claims to instantiate multiple VMs in “minutes,”
however, are insufficient for meeting our performance objec-
tives; hence, we believe our work is a welcome addition in
this context.

7. CONCLUSIONS
As cloud computing becomes increasingly popular, effi-

cient management of VM images, such as image propaga-
tion to compute nodes and image snapshotting for check-
pointing or migration, is critical. The performance of these
operations directly affects the usability of the benefits of-
fered by cloud computing systems. This paper introduced
several techniques that integrate with cloud middleware to

efficiently handle two patterns: multideployment and multi-
snapshotting.

We propose a lazy VM deployment scheme that fetches
VM image content as needed by the application executing
in the VM, thus reducing the pressure on the VM storage
service for heavily concurrent deployment requests. Further-
more, we leverage object versioning to save only local VM
image differences back to persistent storage when a snap-
shot is created, yet provide the illusion that the snapshot is
a different, fully independent image. This has two impor-
tant benefits. First, it handles the management of updates
independently of the hypervisor, thus greatly improving the
portability of VM images and compensating for the lack of
VM image format standardization. Second, it handles snap-
shotting transparently at the level of the VM image reposi-
tory, greatly simplifying the management of snapshots.

We demonstrated the benefits of our approach through
experiments on hundreds of nodes using benchmarks as well
as real-life applications. Compared with simple approaches
based on prepropagation, our approach shows a major im-
provement in both execution time and resource usage: the
total time to perform a multideployment was reduced by
up to a factor of 25, while the storage and bandwidth us-
age was reduced by as much as 90%. Compared with ap-
proaches that use copy-on-write images (i.e., qcow2) based
on raw backing images stored in a distributed file system
(i.e., PVFS), we show a speedup of multideployment by a
factor of 2 and comparable multisnapshotting performance,
all with the added benefits of transparency and portability.

Based on these encouraging results, we plan to explore
the multideployment and multisnapshotting patterns more
extensively. With respect to multideployment, one possible
optimization is to build a prefetching scheme based on previ-
ous experience with the access pattern. With respect to mul-
tisnapshotting, interesting reductions in time and storage
space can be obtained by introducing deduplication schemes.
We also plan to fully integrate the current work with Nim-
bus [3] and explore its benefits for more complex HPC ap-
plications in the real world.

Acknowledgments

The experiments presented in this paper were carried out
using the Grid’5000/ALADDIN-G5K experimental testbed,
an initiative of the French Ministry of Research through
the ACI GRID incentive action, INRIA, CNRS and RE-
NATER and other contributing partners (see http://www.
grid5000.fr/). This work was supported in part by Office of
Science, U.S. Department of Energy, under Contract DE-
AC02-06CH11357.

8. REFERENCES

[1] Amazon elastic block storage (ebs).
http://aws.amazon.com/ebs/.

[2] File system in userspace (fuse).
http://fuse.sourceforge.net.

[3] Nimbus. http://www.nimbusproject.org/.

[4] Opennebula. http://www.opennebula.org/.

[5] Amazon Elastic Compute Cloud (EC2).
http://aws.amazon.com/ec2/.

[6] Amazon Simple Storage Service (S3).
http://aws.amazon.com/s3/.

[7] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz,
A. Konwinski, G. Lee, D. Patterson, A. Rabkin,
I. Stoica, and M. Zaharia. A view of cloud computing.
Commun. ACM, 53:50–58, April 2010.

[8] A. Bar-Noy and S. Kipnis. Designing broadcasting
algorithms in the postal model for message-passing
systems. In SPAA ’92: Proceedings of the 4th Annual
ACM Symposium on Parallel Algorithms and
Architectures, pages 13–22, New York, 1992. ACM.

[9] P. H. Carns, W. B. Ligon, R. B. Ross, and R. Thakur.
Pvfs: A parallel file system for Linux clusters. In
Proceedings of the 4th Annual Linux Showcase and
Conference, pages 317–327, Atlanta, GA, 2000.
USENIX Association.

[10] B. Claudel, G. Huard, and O. Richard. Taktuk,
adaptive deployment of remote executions. In HPDC
’09: Proceedings of the 18th ACM International
Symposium on High Performance Distributed
Computing, pages 91–100, New York, 2009. ACM.

[11] G. DeCandia, D. Hastorun, M. Jampani,
G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels.
Dynamo: Amazon’s highly available key-value store.
In SOSP ’07: Proceedings of 21st ACM SIGOPS
Symposium on Operating Systems Principles, pages
205–220, New York, 2007. ACM.

[12] M. Gagné. Cooking with Linux—still searching for the
ultimate Linux distro? Linux J., 2007(161):9, 2007.

[13] J. G. Hansen and E. Jul. Scalable virtual machine
storage using local disks. SIGOPS Oper. Syst. Rev.,
44:71–79, December 2010.

[14] M. Hibler, L. Stoller, J. Lepreau, R. Ricci, and
C. Barb. Fast, scalable disk imaging with Frisbee. In
ATC ’03: Proceedings of the 2003 USENIX Annual
Technical Conference, pages 283–296, San Antonio,
TX, 2003.

[15] Y. Jégou, S. Lantéri, J. Leduc, M. Noredine,
G. Mornet, R. Namyst, P. Primet, B. Quetier,
O. Richard, E.-G. Talbi, and T. Iréa. Grid’5000: A
large scale and highly reconfigurable experimental grid
testbed. International Journal of High Performance
Computing Applications, 20(4):481–494, November
2006.

[16] K. Keahey and T. Freeman. Science clouds: Early
experiences in cloud computing for scientific
applications. In CCA’08: Proceedings of the 1st
Conference on Cloud Computing and Its Applications,
2008.

[17] K. Keahey, M. O. Tsugawa, A. M. Matsunaga, and
J. A. B. Fortes. Sky computing. IEEE Internet
Computing, 13(5):43–51, 2009.

[18] H. A. Lagar-Cavilla, J. A. Whitney, A. M. Scannell,
P. Patchin, S. M. Rumble, E. de Lara, M. Brudno,
and M. Satyanarayanan. SnowFlock: Rapid virtual
machine cloning for cloud computing. In EuroSys ’09:
Proceedings of the 4th ACM European Conference on
Computer Systems, pages 1–12, New York, 2009.
ACM.

[19] X. Liu, J. Huai, Q. Li, and T. Wo. Network state
consistency of virtual machine in live migration. In
SAC ’10: Proceedings of the 2010 ACM Symposium on

Applied Computing, pages 727–728, New York, 2010.
ACM.

[20] P. Marshall, K. Keahey, and T. Freeman. Elastic site:
Using clouds to elastically extend site resources. In
CCGRID ’10: Proceedings of the 10th IEEE/ACM
International Conference on Cluster, Cloud and Grid
Computing, CCGRID ’10, pages 43–52, Washington,
DC, USA, 2010. IEEE Computer Society.

[21] B. Martin. Using Bonnie++ for filesystem
performance benchmarking. Linux.com, Online
edition, 2008.

[22] D. T. Meyer, G. Aggarwal, B. Cully, G. Lefebvre,
M. J. Feeley, N. C. Hutchinson, and A. Warfield.
Parallax: Virtual disks for virtual machines. SIGOPS
Oper. Syst. Rev., 42(4):41–54, 2008.

[23] B. Nicolae. BlobSeer: Towards Efficient Data Storage
Management for Large-Scale, Distributed Systems.
PhD thesis, University of Rennes 1, November 2010.

[24] B. Nicolae, G. Antoniu, L. Bougé, D. Moise, and
A. Carpen-Amarie. BlobSeer: Next-generation data
management for large scale infrastructures. J. Parallel
Distrib. Comput., 71:169–184, February 2011.

[25] B. Nicolae, D. Moise, G. Antoniu, L. Bougé, and
M. Dorier. Blobseer: Bringing high throughput under
heavy concurrency to Hadoop map/reduce
applications. In IPDPS ’10: Proceedings of the 24th
IEEE International Parallel and Distributed
Processing Symposium, pages 1–12, Atlanta, GA, 2010.

[26] D. Reimer, A. Thomas, G. Ammons, T. Mummert,
B. Alpern, and V. Bala. Opening black boxes: Using
semantic information to combat virtual machine image
sprawl. In VEE ’08: Proceedings of the 4th ACM
SIGPLAN/SIGOPS International Conference on
Virtual Execution Environments, pages 111–120, New
York, 2008. ACM.

[27] O. Rodeh. B-trees, shadowing, and clones. Trans.
Storage, 3(4):1–27, 2008.

[28] A. Rodriguez, J. Carretero, B. Bergua, and F. Garcia.
Resource selection for fast large-scale virtual
appliances propagation. In ISCC ’09: Proceedings of
14th IEEE Symposium on Computers and
Communications, pages 824–829, 5-8 2009.

[29] M. Rosenblum and J. K. Ousterhout. The design and
implementation of a log-structured file system. ACM
Trans. Comput. Syst., 10(1):26–52, 1992.

[30] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and
M. Lindner. A break in the clouds: Towards a cloud
definition. SIGCOMM Comput. Commun. Rev.,
39(1):50–55, 2009.

[31] R. Wartel, T. Cass, B. Moreira, E. Roche,
M. Guijarro, S. Goasguen, and U. Schwickerath.
Image distribution mechanisms in large scale cloud
providers. In CloudCom ’10: Proceedings 2nd IEEE
International Conference on Cloud Computing
Technology and Science, Indianapolis, IN, 2010.

